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Scientific Machine Learning

1 Core component of AI and a computational technology that
can be trained, with scientific data, to augment or automate
human skills.

2 Draws tools from both machine learning and scientific
computing.

3 Foundations: Domain-aware, avoids over-training, robust.
4 Examples: Physics-Informed Neural Networks (PINNs),

Neural Ordinary Differential Equations (ODEs), CNNs for
imaging, GNNs for detectors.
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Primer on Neural Networks

1 Artificial NNs are inspired by the structure of biological NNs in
animal brains.

2 Connected nodes are called artificial neurons.
3 Different layers perform different input transformations.
4 Signals travel from the input layer to the output layer through

the hidden layers.
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Applications of Neural Networks

1 Pattern recognition (radar systems, face identification, 3D
reconstruction)

2 Function approximation (regression analysis, time series
prediction)

3 Data and information visualization
4 Spam email filtering
5 Generative AI (including ChatGPT)
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A Simple ODE

1 Solve for y as a function of x .
2 The equation is ẏ = −2xy .
3 The initial condition is y(0) = 1.
4 The analytic solution is y(x) = e−x2

.
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Navier-Stokes Equations

1 PDEs that describe the motion of viscous fluid substances.
2 Solution is a vector field in the form of flow viscosity.
3 Cauchy’s momentum equation (convective form):

ρDu
Dt = −∇p +∇ · τ + ρa

4 Navier-Stokes existence and smoothness is one of the
Millennium Prize Problems.
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Importance and Necessity of NNs

On October 8, Geoffrey Hinton and John Hopfield were awarded the
Nobel Prize in Physics “for foundational discoveries and inventions
that enable machine learning with artificial neural networks.”

1 Universal Approximation: Neural Networks can theoretically
approximate functions to arbitrary accuracy 1

2 Curse of Dimensionality: Many variable problems are very
computationally expensive.

3 Not Discretized: Does not struggle with inefficient meshes like
FEM methods.

4 Hybrid Models: Can combine both physics of the system as
well as big data.

1Hornik, Stinchcombe, White, Neural Network, 1989 [1]
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Data Driven Physics Discovery

1 Lots of Physics: Finite element methods.
2 Some Physics: Physics-Informed Neural Networks
3 No Physics: Operator and physics learning.2

2Karniadakis, Kevrekidis, Lu, et al., Nature Rev Phys, 2021 [2]
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Inverse Physics-Informed Neural Networks Problem Setup

PINNs are powerful when there is scarce data and not
well-known physics: Inverse Problems.

Goal: Discover the parameters of a system and make surrogate
model.
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Inverse Physics-Informed Neural Networks Problem Setup

Consider a PDE system with solution u over Ω ⊂ Rd :

F [u(x); γ(x)] = 0, x ∈ Ω

B[u(x)] = 0, x ∈ ∂Ω

Goal:
θ∗
u,θ

∗
γ = arg min

θu ,θγ

L(θu,θγ)

for loss function L.
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Inverse Physics-Informed Neural Network Model

1 Construct neural networks û(x,θu), γ̂(x,θγ)

2 Define training sets of Ns ,Nr ,Nb for the PDE and IC/BC.
3 Define loss functions:

Ls(θ) =
1
Ns

Ns∑
i=1

(û(xir )− u(xir ))
2

Lr (θ, λr ) =
1
Nr

Nr∑
i=1

(F [û, γ̂](xir ))
2

Lb(θ, λb) =
1
Nb

Nb∑
i=1

(B[û](xib))2

4 Total loss: L(θ) = Ls(θ) + λrLr (θ) + λbLb(θ)
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Alphabet of PINNs

• Hard and Soft Constrained PINNs
• VPINN: Variational PINNs (and hp-VPINN: h, p refined

variational PINNs)
• GPINN: Gradient-enhanced PINN
• CPINN: Conservative PINNs
• XPINN: Extended PINNs
• fPINN: PINNs for fractional PDEs
• sPINN: PINNs for stochastic DEs
• PI-GAN: Physics-informed Generative Adversarial Network

Neural Network Pipeline for Systems Biology: Solving the Notch Signaling Pathway 14 / 26
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Applications of PINNs

1 Physics: Heat transfer, structural mechanics,
electromagnetism, and fluid dynamics.3

2 Financial Modeling, Epidemiology, Traffic Flow.
3 Systems-Biology

3Daneker, Cai, Qian, et al., Nexus, 2024 [3]
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Application of PINNs in Systems Biology

In Systems-Biology related problems, instead of dealing with one
PDE, we instead have to deal with a system of coupled ODEs
(though this can be extended to PDEs). Just like PINNs, we have
the problems of scarce data and fuzzy measurements.

Goal: Create new ML pipeline using PINNs to discover parameters
of a biological system to properly make conclusions about chemical
pathways, disease, etc.

Solution: Utilise... systems Biology-informed NNs! Or, sBINNs for
short.

L(θ) = LS(θ) +
∑

F∈ODE Residuals

LF (θ)
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sBINNs specific problem

The system of ODEs that we focused on was specifically the Notch
signalling pathway mentioned at the beginning. For the sake of
clarity, the ODEs will be shown here. There are 22 state variables:

d [Dl4c1]

dt
= −

(
kf · Dl4c1 · Notch1c2 + kr · Dll1_Notch1c2

)
−

(
kf · Dl4c1 · Notch1c1 + kr · Dll4_Notch1c1

)
d [Notch1c1]

dt
= −

(
kf · Dl4c2 · Notch1c1 + kr · Dll4_Notch1

c1

)
−

(
kf · Dl1c2 · Notch1c1 + kr · Dll1_Notch1c1

)
d [Dl4_Notch1c1]

dt
=

Gs · kcat · Dl4c1 · Notch1c1
Km + Dl4_Notch1c1

−
tetAhe · Hes1c1c2
Kp + NICDc1c2

d [NICDc1]

dt
= −

tetAhe · Hes1c1c2
Kp + NICDc1c2

d [Jagged1c1]

dt
= −kdeg_Jag · Jagged1c1 −

(
kon_cis · Jagged1c1 · Notch1c1 + kon_cis · JagNotchc1

)
d [Jag_Notch

c1]

dt
= kon_cis · Jagged1c1 · Notch1c1 + kon_cis · JagNotchc1

d [Notch_jag2c1]

dt
= kf · JagNotch_jagc1c1 · Notch1c2 + kr · JagNotch_jagc1c1 −

(
kf · Dl1c2 · Notch1c1 + kr · Dll1_Notch1c1

)
d [pR2c1]

dt
= kp · R22 · V − kdp · R2 · pR2c1 − kdeg_pR2 · pR2c2

d [Vc1]

dt
= kp · R22 · V − kdp · R2 · pR2c1

d [Dl4c2]

dt
= −

(
kf · Dl4c2 · Notch1c1 + kr · Dll4_Notch1c1

)
−

(
kf · Dl4c1 · Notch1c2 + kr · Dll4_Notch1

c2

)
d [Notch1c2]

dt
= −

(
kf · Dl4c2 · Notch1c2 + kr · Dll4_Notch1c2

)
−

(
kf · Dl1c2 · Notch1c1 + kr · Dll1_Notch1c1

)
d [Dl4_Notch1

c2]

dt
=

Gs · kcat · Dl4c2 · Notch1c2
Km + Dl4_Notch1

c2
−

tetAhe · NICDc2c2

Kp + NICDc2c2

d [NICDc2]

dt
=

tetAhe · NICDc2c2

Kp + NICDc2c2
− kcat · Dl4c2 · Notch1c2

d [Jagged1c2]

dt
= −kdeg_Jag · Jagged1c2 −

(
kon_cis · Jagged1c2 · Notch1c2 + kon_cis · JagNotchc2

)
d [Jag_Notch_jagc1c2]

dt
= kf · JagNotch_jagc1c2 · Notch1c2 + kr · JagNotch_jagc1c2 −

(
kf · Dl1c1 · Notch1c2 + kr · Dll1_Notch1c2

)
d [pR2c2]

dt
= kp · R22 · V − kdp · R2 · pR2c2 − kdeg_pR2 · pR2c1

d [Vc2]

dt
= kp · R22 · V − kdp · R2 · pR2c2
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Utilization of Identifiability

So, because we have so many ODEs, we have to narrow down what
actually matters.

In our case, we have:

Parameter kfdllN kpR2 kdpR2 krdllN Km kcat kdegNICD kdegNotch kdegDll4 kpDll teta kdegHes1 KpHes
Identifiability ✓ ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓ ✓ ✓ ✓
Parameter tetaHe koncis kdegJag krjagNotch krcis kfjagNotch KpJag tetaJag kdegpR2 kdegiR2 Gs kformNotch kp

Identifiability ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ × × ✓ ×

Table 1: Structural Identifiability of Notch model with STRIKE-GOLDD
and StucturalIdentifiability.jl.

Ultimately, we focused on kf ,DllN, kp,R2, kdeg,NICD, kdeg,Notch,
kdeg,Dll4, θ, and kdeg,pR2, with kdeg,NICD being the most sensitive.
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Sensitivity Analysis

After selecting those 8 parameters, we run a standard OAT
(one-at-a-time) sensitivity analysis to determine how fast each
parameter should get trained in our inverse-SBINN setup.

Figure 1: Sensitivity Analysis for the Notch ODE problem on parameters
of interest.
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Model Results

Figure 2: Parameters we tracked
during the training of the final
SBINN model.

Name Value
kf_dllN 0.103
kp_R2 0.979

kdeg_NICD 1.84
kdeg_Notch 0.437
kdeg_Dll4 0.178

teta 2.03
kdeg_pR2 0.556
kd_dllN 0.307

Figure 3: Relative values attained
after training.
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