Introduction	PINNs	SBINNs	Conclusion	References
0000000	0000000	000000	000	00

Neural Network Pipeline for Systems Biology: Solving the Notch Signaling Pathway

Alex Huang, Kartik Ramachandrula, Agniv Sarkar

Prof. Lu Lu (Yale University) MIT PRIMES October Conference 2024

October 12, 2024

Introduction ●000000	PINNs 0000000	SBINNs 000000	Conclusion	References

1 Introduction

2 PINNs

3 SBINNs

4 Conclusion

э

• Core component of AI and a computational technology that can be trained, with scientific data, to augment or automate human skills.

- Core component of AI and a computational technology that can be trained, with scientific data, to augment or automate human skills.
- Oraws tools from both machine learning and scientific computing.

- Core component of AI and a computational technology that can be trained, with scientific data, to augment or automate human skills.
- Draws tools from both machine learning and scientific computing.
- **3** Foundations: Domain-aware, avoids over-training, robust.

- Core component of AI and a computational technology that can be trained, with scientific data, to augment or automate human skills.
- Oraws tools from both machine learning and scientific computing.
- **3** Foundations: Domain-aware, avoids over-training, robust.
- Examples: Physics-Informed Neural Networks (PINNs), Neural Ordinary Differential Equations (ODEs), CNNs for imaging, GNNs for detectors.

Introduction 00€0000	PINNs 0000000	SBINNs 000000	Conclusion 000	References 00
Primer on Ne	ural Networks			

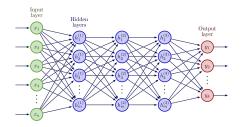
 Artificial NNs are inspired by the structure of biological NNs in animal brains.

Introduction	PINNs	SBINNs	Conclusion	References
00●0000	0000000	000000	000	00
Primer on Neura	al Networks			

- Artificial NNs are inspired by the structure of biological NNs in animal brains.
- 2 Connected nodes are called *artificial neurons*.

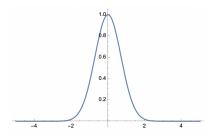
- Artificial NNs are inspired by the structure of biological NNs in animal brains.
- 2 Connected nodes are called *artificial neurons*.
- **3** Different layers perform different input transformations.

- Artificial NNs are inspired by the structure of biological NNs in animal brains.
- 2 Connected nodes are called artificial neurons.
- **3** Different layers perform different input transformations.
- G Signals travel from the input layer to the output layer through the hidden layers.



- Pattern recognition (radar systems, face identification, 3D reconstruction)
- Function approximation (regression analysis, time series prediction)
- **③** Data and information visualization
- 4 Spam email filtering
- Generative AI (including ChatGPT)

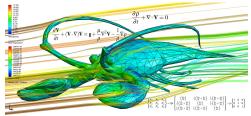
- **1** Solve for y as a function of x.
- **2** The equation is $\dot{y} = -2xy$.
- **3** The initial condition is y(0) = 1.
- 4 The analytic solution is $y(x) = e^{-x^2}$.



- **1** PDEs that describe the motion of viscous fluid substances.
- 2 Solution is a vector field in the form of flow viscosity.
- **3** Cauchy's momentum equation (convective form):

$$\rho \frac{\mathsf{Du}}{\mathsf{D}t} = -\nabla p + \nabla \cdot \tau + \rho \mathsf{a}$$

 Navier-Stokes existence and smoothness is one of the Millennium Prize Problems.



¹Hornik, Stinchcombe, White, Neural Network, 1989 [1]

 Universal Approximation: Neural Networks can theoretically approximate functions to arbitrary accuracy ¹

¹Hornik, Stinchcombe, White, Neural Network, 1989 [1]

- Universal Approximation: Neural Networks can theoretically approximate functions to arbitrary accuracy ¹
- Q Curse of Dimensionality: Many variable problems are very computationally expensive.

¹Hornik, Stinchcombe, White, Neural Network, 1989 [1] 🛛 🕢 🕁

- Universal Approximation: Neural Networks can theoretically approximate functions to arbitrary accuracy ¹
- Q Curse of Dimensionality: Many variable problems are very computationally expensive.
- O Not Discretized: Does not struggle with inefficient meshes like FEM methods.

¹Hornik, Stinchcombe, White, Neural Network, 1989 [1]

- Universal Approximation: Neural Networks can theoretically approximate functions to arbitrary accuracy ¹
- Q Curse of Dimensionality: Many variable problems are very computationally expensive.
- O Not Discretized: Does not struggle with inefficient meshes like FEM methods.
- Hybrid Models: Can combine both physics of the system as well as big data.

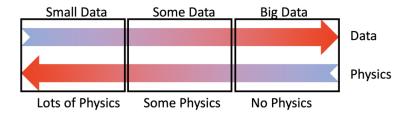
¹Hornik, Stinchcombe, White, Neural Network, 1989 [1]

Introduction	PINNs	SBINNs	Conclusion	References
0000000	●000000	000000	000	

1 Introduction

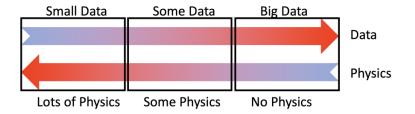
4 Conclusion

ъ

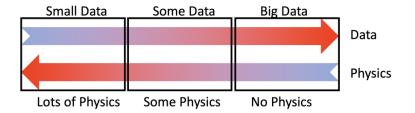


² Karniadakis, Kevrekidis, Lu, et al., Nature Rev Phys, 2021 [2] 🛛 🕻 🗆 २ 🗇 २ 🖓 २ 🖓

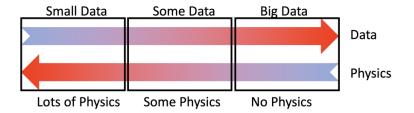
Neural Network Pipeline for Systems Biology: Solving the Notch Signaling Pathway



1 Lots of Physics: Finite element methods.



- 1 Lots of Physics: Finite element methods.
- **2** Some Physics: Physics-Informed Neural Networks



- 1 Lots of Physics: Finite element methods.
- **2** Some Physics: Physics-Informed Neural Networks
- **3** No Physics: Operator and physics learning.²

PINNs are powerful when there is scarce data and not well-known physics: Inverse Problems.

PINNs are powerful when there is scarce data and not well-known physics: Inverse Problems.

Goal: Discover the parameters of a system and make surrogate model.

Consider a PDE system with solution **u** over $\Omega \subset \mathbb{R}^d$:

$$\begin{aligned} \mathcal{F}[\mathbf{u}(\mathbf{x});\gamma(\mathbf{x})] &= 0, & \mathbf{x} \in \Omega \\ \mathcal{B}[\mathbf{u}(\mathbf{x})] &= 0, & \mathbf{x} \in \partial\Omega \end{aligned}$$

Consider a PDE system with solution **u** over $\Omega \subset \mathbb{R}^d$:

$$\begin{aligned} \mathcal{F}[\mathbf{u}(\mathbf{x});\gamma(\mathbf{x})] &= 0, & \mathbf{x}\in\Omega \\ \mathcal{B}[\mathbf{u}(\mathbf{x})] &= 0, & \mathbf{x}\in\partial\Omega \end{aligned}$$

Goal:

$$\boldsymbol{\theta}_{u}^{*}, \boldsymbol{\theta}_{\gamma}^{*} = \arg\min_{\boldsymbol{\theta}_{u}, \boldsymbol{\theta}_{\gamma}} \mathcal{L}(\boldsymbol{\theta}_{u}, \boldsymbol{\theta}_{\gamma})$$

for loss function \mathcal{L} .

.

1 Construct neural networks $\hat{u}(\mathbf{x}, \boldsymbol{\theta}_u), \hat{\gamma}(\mathbf{x}, \boldsymbol{\theta}_{\gamma})$

-

< - 17 ►

- **1** Construct neural networks $\hat{u}(\mathbf{x}, \boldsymbol{\theta}_u), \hat{\gamma}(\mathbf{x}, \boldsymbol{\theta}_{\gamma})$
- **2** Define training sets of N_s , N_r , N_b for the PDE and IC/BC.

- **1** Construct neural networks $\hat{u}(\mathbf{x}, \boldsymbol{\theta}_u), \hat{\gamma}(\mathbf{x}, \boldsymbol{\theta}_{\gamma})$
- **2** Define training sets of N_s , N_r , N_b for the PDE and IC/BC.
- **3** Define loss functions:

$$\mathcal{L}_{s}(\theta) = \frac{1}{N_{s}} \sum_{i=1}^{N_{s}} (\hat{u}(\mathbf{x}_{r}^{i}) - u(\mathbf{x}_{r}^{i}))^{2}$$
$$\mathcal{L}_{r}(\theta, \lambda_{r}) = \frac{1}{N_{r}} \sum_{i=1}^{N_{r}} (\mathcal{F}[\hat{u}, \hat{\gamma}](\mathbf{x}_{r}^{i}))^{2}$$
$$\mathcal{L}_{b}(\theta, \lambda_{b}) = \frac{1}{N_{b}} \sum_{i=1}^{N_{b}} (\mathcal{B}[\hat{u}](\mathbf{x}_{b}^{i}))^{2}$$

 Introduction
 PINNs coool
 SBINNs coool
 Conclusion coo
 References coo

 Inverse
 Physics-Informed
 Neural
 Network
 Model

- **1** Construct neural networks $\hat{u}(\mathbf{x}, \boldsymbol{\theta}_u), \hat{\gamma}(\mathbf{x}, \boldsymbol{\theta}_{\gamma})$
- **2** Define training sets of N_s , N_r , N_b for the PDE and IC/BC.
- **3** Define loss functions:

$$egin{aligned} \mathcal{L}_s(heta) &= rac{1}{N_s}\sum_{i=1}^{N_s}(\hat{u}(\mathbf{x}_r^i) - u(\mathbf{x}_r^i))^2 \ \mathcal{L}_r(heta,\lambda_r) &= rac{1}{N_r}\sum_{i=1}^{N_r}(\mathcal{F}[\hat{u},\hat{\gamma}](\mathbf{x}_r^i))^2 \ \mathcal{L}_b(heta,\lambda_b) &= rac{1}{N_b}\sum_{i=1}^{N_b}(\mathcal{B}[\hat{u}](\mathbf{x}_b^i))^2 \end{aligned}$$

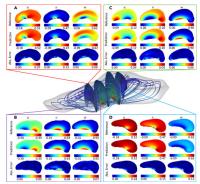
4 Total loss:
$$\mathcal{L}(\theta) = \mathcal{L}_{s}(\theta) + \lambda_{r}\mathcal{L}_{r}(\theta) + \lambda_{b}\mathcal{L}_{b}(\theta)$$

- Hard and Soft Constrained PINNs
- VPINN: Variational PINNs (and hp-VPINN: h, p refined variational PINNs)
- GPINN: Gradient-enhanced PINN
- CPINN: Conservative PINNs
- XPINN: Extended PINNs
- fPINN: PINNs for fractional PDEs
- sPINN: PINNs for stochastic DEs
- PI-GAN: Physics-informed Generative Adversarial Network

electromagnetism, and fluid dynamics.³

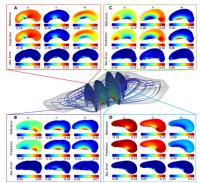
³Daneker, Cai, Qian, et al., Nexus, 2024 [3]

Physics: Heat transfer, structural mechanics, electromagnetism, and fluid dynamics.³



³Daneker, Cai, Qian, et al., Nexus, 2024 [3]

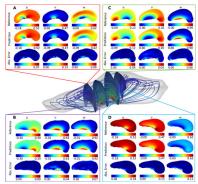
Physics: Heat transfer, structural mechanics, electromagnetism, and fluid dynamics.³



2 Financial Modeling, Epidemiology, Traffic Flow.

³Daneker, Cai, Qian, et al., Nexus, 2024 [3]

Physics: Heat transfer, structural mechanics, electromagnetism, and fluid dynamics.³



- **2** Financial Modeling, Epidemiology, Traffic Flow.
- Systems-Biology

³Daneker, Cai, Qian, et al., Nexus, 2024 [3]

Introduction	PINNs	SBINNs	Conclusion	References
0000000	0000000	●00000	000	00

1 Introduction

2 PINNs

4 Conclusion

In Systems-Biology related problems, instead of dealing with *one* PDE, we instead have to deal with a system of coupled ODEs (though this can be extended to PDEs). Just like PINNs, we have the problems of scarce data and fuzzy measurements.

Goal: Create new ML pipeline using PINNs to discover parameters of a *biological* system to properly make conclusions about chemical pathways, disease, etc.

In Systems-Biology related problems, instead of dealing with *one* PDE, we instead have to deal with a system of coupled ODEs (though this can be extended to PDEs). Just like PINNs, we have the problems of scarce data and fuzzy measurements.

Goal: Create new ML pipeline using PINNs to discover parameters of a *biological* system to properly make conclusions about chemical pathways, disease, etc.

Solution: Utilise... systems Biology-informed NNs! Or, sBINNs for short.

$$\mathcal{L}(heta) = \mathcal{L}_{\mathcal{S}}(heta) + \sum_{\mathcal{F} \in \mathsf{ODE Residuals}} \mathcal{L}_{\mathcal{F}}(heta)$$

Introduction PINNs SBINNs Conclusion References sBINNs specific problem

The system of ODEs that we focused on was specifically the Notch signalling pathway mentioned at the beginning. For the sake of clarity, the ODEs will be shown here. There are 22 state variables:

$$\frac{d[\mathrm{D}\mathrm{I4}_{c1}]}{dt} = -\left(k_{f} \cdot \mathrm{D}\mathrm{I4}_{c1} \cdot \mathrm{Notch1}_{c2} + k_{r} \cdot \mathrm{D}\mathrm{I1}_{-}\mathrm{Notch1}_{c2}\right) \\ -\left(k_{f} \cdot \mathrm{D}\mathrm{I4}_{c1} \cdot \mathrm{Notch1}_{c1} + k_{r} \cdot \mathrm{D}\mathrm{I1}_{-}\mathrm{Notch1}_{c1}\right) \\ \frac{d[\mathrm{Notch1}_{c1}]}{dt} = -\left(k_{f} \cdot \mathrm{D}\mathrm{I4}_{c2} \cdot \mathrm{Notch1}_{c1} + k_{r} \cdot \mathrm{D}\mathrm{I1}_{-}\mathrm{Notch1}_{c1}\right) \\ -\left(k_{f} \cdot \mathrm{D}\mathrm{I1}_{c2} \cdot \mathrm{Notch1}_{c1} + k_{r} \cdot \mathrm{D}\mathrm{I1}_{-}\mathrm{Notch1}_{c1}\right) \\ \frac{d[\mathrm{D}\mathrm{I4}_{-}\mathrm{Notch1}_{c1}]}{dt} = \frac{G_{s} \cdot k_{cast} \cdot \mathrm{D}\mathrm{I4}_{c1} \cdot \mathrm{Notch1}_{c1}}{K_{m} + \mathrm{D}\mathrm{I4}_{-}\mathrm{Notch1}_{c1}} - \frac{\mathrm{tetAhe} \cdot \mathrm{Hes1}_{c1c2}}{K_{p} + \mathrm{NICD}_{c1c2}} \\ \frac{d[\mathrm{NICD}_{c1}]}{dt} = -\frac{\mathrm{tetAhe} \cdot \mathrm{Hes1}_{c1c2}}{K_{p} + \mathrm{NICD}_{c1c2}} \\ \frac{d[\mathrm{Jagged1}_{c1}]}{dt} = -k_{\mathrm{deg}_{-}\mathrm{Jag}} \cdot \mathrm{Jagged1}_{c1} - \left(k_{\mathrm{on}_{-}\mathrm{cis}} \cdot \mathrm{Jagged1}_{c1} \cdot \mathrm{Notch1}_{c1} + k_{\mathrm{on}_{-}\mathrm{cis}} \cdot \mathrm{JagNotch}_{c1}\right) \\ \frac{d[\mathrm{Jag}_{-}\mathrm{Notch}_{c1}]}{dt} = k_{\mathrm{on}_{-}\mathrm{cis}} \cdot \mathrm{Jagged1}_{c1} \cdot \mathrm{Notch1}_{c1} + k_{\mathrm{on}_{-}\mathrm{cis}} \cdot \mathrm{JagNotch}_{c1} \\ \frac{d[\mathrm{Notch}_{-}\mathrm{Jag2}_{c1}]}{dt} = k_{\mathrm{on}_{-}\mathrm{cis}} \cdot \mathrm{JagNotch}_{c1} + k_{\mathrm{on}_{-}\mathrm{cis}} \cdot \mathrm{JagNotch}_{c1} \\ \frac{d[\mathrm{PR2}_{c1}]}{dt} = k_{\mathrm{f}} \cdot \mathrm{JagNotch}_{-}\mathrm{Jagc1}_{c1} \cdot \mathrm{Notch1}_{c2} + k_{r} \cdot \mathrm{JagNotch}_{-}\mathrm{Jagc1}_{c1} - \left(k_{f} \cdot \mathrm{D}\mathrm{I1}_{c2} \cdot \mathrm{Notch1}_{c1}\right) \\ \frac{d[\mathrm{PR2}_{c1}]}{dt} = k_{\mathrm{f}} \cdot \mathrm{JagNotch}_{-}\mathrm{Jagc1}_{c1} \cdot \mathrm{Notch1}_{c2} + k_{r} \cdot \mathrm{JagNotch}_{-}\mathrm{Jagc1}_{c1} - \left(k_{f} \cdot \mathrm{D}\mathrm{I1}_{c2} \cdot \mathrm{Notch1}_{c1}\right) \\ \frac{d[\mathrm{PR2}_{c1}]}{dt} = k_{\mathrm{f}} \cdot \mathrm{JagNotch}_{-}\mathrm{Jagc1}_{c1} \cdot \mathrm{Notch1}_{c2} + k_{r} \cdot \mathrm{JagNotch}_{-}\mathrm{Jagc1}_{c1} - \left(k_{f} \cdot \mathrm{D}\mathrm{I1}_{c2} \cdot \mathrm{Notch1}_{c1}\right) \\ \frac{d[\mathrm{PR2}_{c1}]}{dt} = k_{\mathrm{f}} \cdot \mathrm{JagNotch}_{-}\mathrm{Jagc1}_{c1} \cdot \mathrm{Notch1}_{c2} + k_{r} \cdot \mathrm{JagNotch}_{-}\mathrm{Jagc1}_{c1} - \left(k_{f} \cdot \mathrm{D}\mathrm{I1}_{c2} \cdot \mathrm{Notch1}_{c1}\right) \\ \frac{d[\mathrm{PR2}_{c1}]}{dt} = k_{\mathrm{f}} \cdot \mathrm{JagNotch}_{c1} + k_{\mathrm{f}} \cdot \mathrm{JagNotch}_{c1} + k_{\mathrm{f}} \cdot \mathrm{JagNotch}_{c1} + k_{\mathrm{f}} \cdot \mathrm{JagNotch}_{c1} + k_{\mathrm{f}} \cdot \mathrm{JagNotch}_{c1}\right]$$

Introduction 0000000	PINNs 0000000	SBINNs 000●00	Conclusion 000	References 00
Utilization o	f Identifiability			

So, because we have so many ODEs, we have to narrow down *what actually matters*.

So, because we have so many ODEs, we have to narrow down *what actually matters.* In our case, we have:

Parameter	kf _{dllN}	kp _{R2}	kdp _{R2}	kr _{dIIN}	Km	kcat	kdeg _{NICD}	kdeg _{Notch}	kdeg _{DII4}	kp _{DII}	teta	kdeg _{Hes1}	Kp _{Hes}
Identifiability	~	~	~	~	~	×	~	~	~	~	~	~	~
Parameter	tetaHe	kon _{cis}	$kdeg_{Jag}$	kr _{jagNotch}	kr _{cis}	kf _{jagNotch}	Kp _{Jag}	tetaJag	kdeg _{pR2}	kdeg _{iR2}	Gs	kform _{Notch}	kp
Identifiability					7				1				

 Table 1: Structural Identifiability of Notch model with STRIKE-GOLDD

 and StucturalIdentifiability.jl.

So, because we have so many ODEs, we have to narrow down *what actually matters.* In our case, we have:

Parameter	kf _{dllN}	kp _{R2}	kdp _{R2}	kr _{dIIN}	Km	kcat	kdeg _{NICD}	kdeg _{Notch}	kdeg _{DII4}	kp _{DII}	teta	kdeg _{Hes1}	Kp _{Hes}
Identifiability	~	~	~	~	~	×	~	~	~	~	~	~	~
Parameter	tetaHe	kon _{cis}	$kdeg_{Jag}$	kr _{jagNotch}	kr _{cis}	kf _{jagNotch}	Kp _{Jag}	tetaJag	kdeg _{pR2}	kdeg _{iR2}	Gs	kform _{Notch}	kp
Identifiability					7				1				

 Table 1: Structural Identifiability of Notch model with STRIKE-GOLDD

 and StucturalIdentifiability.jl.

Ultimately, we focused on $k_{f,\text{DIIN}}$, $k_{p,\text{R2}}$, $k_{\text{deg,NICD}}$, $k_{\text{deg,Notch}}$, $k_{\text{deg,DII4}}$, θ , and $k_{\text{deg,pR2}}$, with $k_{\text{deg,NICD}}$ being the most sensitive.

After selecting those 8 parameters, we run a standard OAT (one-at-a-time) sensitivity analysis to determine *how fast* each parameter should get trained in our inverse-SBINN setup.

< A ▶

After selecting those 8 parameters, we run a standard OAT (one-at-a-time) sensitivity analysis to determine *how fast* each parameter should get trained in our inverse-SBINN setup.

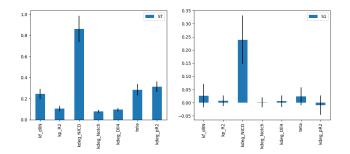


Figure 1: Sensitivity Analysis for the Notch ODE problem on parameters of interest.

Introduction 0000000	PINNs 0000000	SBINNs 00000●	Conclusion	References
Model Results				

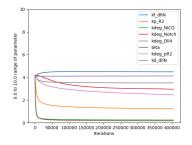


Figure 2: Parameters we tracked during the training of the final SBINN model.

Name	Value
kf_dllN	0.103
kp_R2	0.979
kdeg_NICD	1.84
kdeg_Notch	0.437
kdeg_Dll4	0.178
teta	2.03
kdeg_pR2	0.556
kd dllN	0.307

Figure 3: Relative values attained after training.

Introduction PIN	Ns SBINNs	Conclusion	n References
0000000 000	0000 000000	●○○	00

1 Introduction

2 PINNs

3 SBINNs

ъ

Introduction	PINNs	SBINNs	Conclusion	References
0000000	0000000	000000	○●○	00
Acknowledger	nents			

- Mentor Prof. Lu Lu of Lu Group at Yale University.
 - For all of his hard work, mentoring, and letting us discuss our ideas, no matter how messy they started out.

Introduction	PINNs	SBINNs	Conclusion	References
0000000	0000000	000000	○●○	00
Acknowledger	nents			

- Mentor Prof. Lu Lu of Lu Group at Yale University.
 - For all of his hard work, mentoring, and letting us discuss our ideas, no matter how messy they started out.
- Mr. Mitchell Daneker and Ms. Rebecca Olivera.
 - For providing us with context on the Notch system, and understanding why this problem was relevant.

Introduction	PINNs	SBINNs	Conclusion	References
0000000	0000000	000000	○●○	00
Acknowledger	ments			

- Mentor Prof. Lu Lu of Lu Group at Yale University.
 - For all of his hard work, mentoring, and letting us discuss our ideas, no matter how messy they started out.
- Mr. Mitchell Daneker and Ms. Rebecca Olivera.
 - For providing us with context on the Notch system, and understanding why this problem was relevant.
- Dr. Tanya Khovanova, Dr. Slava Gerovitch, and the rest of the MIT PRIMES program.
 - Tanya, for her awesomeness and receptiveness.
 - Dr. Gerovitch, for his son. He's really cool!

Introduction	PINNs	SBINNs	Conclusion	References
0000000	0000000	000000	○●○	00
Acknowledger	ments			

- Mentor Prof. Lu Lu of Lu Group at Yale University.
 - For all of his hard work, mentoring, and letting us discuss our ideas, no matter how messy they started out.
- Mr. Mitchell Daneker and Ms. Rebecca Olivera.
 - For providing us with context on the Notch system, and understanding why this problem was relevant.
- Dr. Tanya Khovanova, Dr. Slava Gerovitch, and the rest of the MIT PRIMES program.
 - Tanya, for her awesomeness and receptiveness.
 - Dr. Gerovitch, for his son. He's really cool!
- Prof. Tyler Cowen of Emergent Ventures.
 - For a grant dedicated to our research, focused on compute.

Introduction	PINNs	SBINNs	Conclusion	References
0000000	0000000	000000	○●○	00
Acknowledger	ments			

- Mentor Prof. Lu Lu of Lu Group at Yale University.
 - For all of his hard work, mentoring, and letting us discuss our ideas, no matter how messy they started out.
- Mr. Mitchell Daneker and Ms. Rebecca Olivera.
 - For providing us with context on the Notch system, and understanding why this problem was relevant.
- Dr. Tanya Khovanova, Dr. Slava Gerovitch, and the rest of the MIT PRIMES program.
 - Tanya, for her awesomeness and receptiveness.
 - Dr. Gerovitch, for his son. He's really cool!
- Prof. Tyler Cowen of Emergent Ventures.
 - For a grant dedicated to our research, focused on compute.
- Parents, family, and friends for supporting us throughout our endeavors.
 - Without them, where would we be? (Not in Boston).

Introduction	PINNs	SBINNs	Conclusion	References
0000000	0000000	000000	○○●	

Thank You

Agniv Sarkar, Kartik Ramachandrula, Alex Huang

Neural Network Pipeline for Systems Biology: Solving the Notch Signaling Pathway

Introduction	PINNs	SBINNs	Conclusion	References
0000000	0000000	000000	000	●○

1 Introduction

2 PINNs

3 SBINNs

4 Conclusion

ъ

Introduction	PINNs	SBINNs	Conclusion	References
0000000	0000000	000000	000	○●

- [1] K. Hornik, M. Stinchcombe, and H. White, "Multilayer feedforward networks are universal approximators," *Neural Networks*, vol. 2, no. 5, pp. 359–366, 1989.
- [2] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang, "Physics-informed machine learning," *Nature Reviews Physics*, vol. 3, pp. 422–440, June 2021.
- [3] M. Daneker, S. Cai, Y. Qian, E. Myzelev, A. Kumbhat, H. Li, and L. Lu, "Transfer learning on physics-informed neural networks for tracking the hemodynamics in the evolving false lumen of dissected aorta," *Nexus*, vol. 1, no. 2, p. 100016, 2024.
- [4] Z.-J. Liu *et al.*, "Regulation of notch1 and dll4 by vascular endothelial growth factor in arterial endothelial cells: Implications for modulating arteriogenesis and angiogenesis," *Molecular and Cellular Biology*, vol. 23, no. 1, pp. 14–25, 2003. PMID: 12482957.